Answer:
3y+5x=6
Explanation:
Equation of the Line
The equation of a line passing through points (x1,y1) and (x2,y2) can be found as follows:
![\displaystyle y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/college/23qadvao41i7o4ifvkjzluiximg3ahexep.png)
The line passes through the points (6,-8) and (-3,7), thus:
![\displaystyle y+8=(7+8)/(-3-6)(x-6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/o1iy9n4k3y6md11b0o58abkftqzhae17rv.png)
![\displaystyle y+8=(15)/(-9)(x-6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/d6bs8ahu8o1vs3qib24iy6ucv2rvs4q65u.png)
Simplifying:
![\displaystyle y+8=-(5)/(3)(x-6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3l5xa8vrjd2ahmihhktms4gkwjmymvb2zy.png)
Multiplying by 3:
![3(y+8)=-5(x-6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gmr3kt1h4rterty15oy4cwkvyxh71o7i30.png)
![3y+24=-5x+30](https://img.qammunity.org/2021/formulas/mathematics/high-school/kzl8pl1g18j7u91q3x3fzkwbe0mqjtug26.png)
Moving all the variables to the left side:
3y + 5x = 30 - 24
3y + 5x = 6