173k views
17 votes
The sum of three consecutive multiples of 7 is 693. Find the no​

User Smoke
by
6.2k points

1 Answer

5 votes

Let x be a multiple of 7

  • The next two consecutive multiples of 7 are x + 7 and x + 7 + 7 (i.e. x + 14)

Three consecutive multiples of 7 are

  • x
  • x + 7
  • x + 14

According to the condition


\\ \large\blue\longrightarrow\rm \large \:x \: + \: (x \: + \: 7) + (x \: + \: 14) \: = \: 693


\large\blue\longrightarrow \rm \large \:3x \: + \: 21 \: = \: 693


\large\blue\longrightarrow \rm \large \:3x \: = \: 693 \: - \: 21


\large\blue\longrightarrow \rm \large \:3x \: = \: 672

Dividing both sides by 3 , we have


\large\blue\longrightarrow \rm \large \: (3x)/(3) \: = \: (672)/(3) \\


\large\blue\longrightarrow \rm \large \: \ \: ( \cancel3x)/( \cancel3) \: = \: \frac{ \cancel{672} \: \: ^{ \red{224}} }{ \cancel3} \\


\large\blue\longrightarrow \rm \large \:x \: = \: 224 \\

  • x = 224
  • x + 7 = 224 + 7 = 231
  • x + 14 = 224 + 14 = 238

Three consecutive multiples of 7 are

  • 224
  • 231
  • 238
User Inkyung
by
4.9k points