122k views
2 votes
If BTS=GHD BS=25 TS=14 BT=31 GD=4x-11 S=56 B=21 and H=(7y+5) find the values of x and y

1 Answer

3 votes

Given:

Consider the completer question is "If ∆BTS≅∆GHD, BS=25, TS=14, BT=31, GD=4x-11, m∠S=56, m∠B=21 and m∠H=(7y+5), find the values of x and y.

To find:

The values of x and y.

Solution:

We have,


\Delta BTS\cong \Delta GHD (Given)


BS=GD (CPCTC)


25=4x-11


25+11=4x


36=4x

Divide both sides by 4.


9=x

In ∆BTS,


\angle B+\angle T+\angle S=180^\circ (Angle sum property)


21^\circ+\angle T+56^\circ=180^\circ


77^\circ+\angle T=180^\circ


\angle T=180^\circ-77^\circ


\angle T=103^\circ

Now,


\angle T=\angle H (CPCTC)


103=7y+5


103-5=7y


98=7y

Divide both sides by 7.


14=y

Therefore, the value of x is 9 and value of y is 14.

User Yuhi
by
5.1k points