200k views
2 votes
5/x+3 take away 1/x-2 equals to 1. solve two possible answers for x

1 Answer

4 votes

Answer:

Solution:-

  • First write the given equation


\qquad{:}\longrightarrow
\sf \frac {5}{x+3}-(1)/(x-2)=1


\qquad{:}\longrightarrow
\sf \frac {5 (x-2)-1 (x+3)}{(x+3)(x-2)}=1


\qquad{:}\longrightarrow
\sf \frac {5x-10-x }{x^2-6x-6} =1

  • use cross multiplication method


\qquad{:}\longrightarrow
\sf 5x-x-10=x^2-6x-6


\qquad{:}\longrightarrow
\sf x^2-6x-6=4x-10


\qquad{:}\longrightarrow
\sf x^2-6x-4x-6+10=0


\qquad{:}\longrightarrow
\sf x^2-10x+4=0

  • use quadratic formula


\qquad{:}\longrightarrow
\sf x=\frac {-b\underline{+}\sqrt {b^2-4ac}}{2a}


\qquad{:}\longrightarrow
\sf x=\frac {10\underline{+}\sqrt {(-10)^2-4×1×4}}{2×1}


\qquad{:}\longrightarrow
\sf x=\frac {10\underline{+}√(100-16)}{2}


\qquad{:}\longrightarrow
\sf x=\frac {10\underline{+}\sqrt {84}}{2}


\qquad{:}\longrightarrow
\sf x=\frac {10+\sqrt {84}}{2}\quad or\quad x=\frac {10-√(84)}{2}

User Solyd
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories