66.5k views
4 votes
Evaluate the following pic

Evaluate the following pic-example-1
User Roshan Jha
by
8.7k points

1 Answer

3 votes

Answer:

1)
√(1225)+√(1024)=67

2)
\sqrt[3]{-1331}=-11

3) Evaluating
2:p :: p:8 we get
p=\pm 4

4)
x^3+y^2+z \ when \ x=3, y=-2, x=-6 \ we \ get \ \mathbf{25}

5)
((-6)^4*(-2)^3*(3)^3)/((-6)^6)=-6

Explanation:

1)
√(1225)+√(1024)

Prime factors of 1225 : 5x5x7x7

Prime factors of 1024: 2x2x2x2x2x2x2x2x2x2


√(1225)+√(1024)\\=√(5*5*7*7)+√(2*2*2*2*2*2*2*2*2*2)\\=√(5^2*7^2)+√(2^2*2^2*2^2*2^2*2^2)\\=5*7+(2*2*2*2*2)\\=35+32\\=67


√(1225)+√(1024)=67

2)
\sqrt[3]{-1331}

We know that
\sqrt[n]{-x}=-\sqrt[n]{x} \ ( \ if \ n \ is \ odd)

Applying radical rule:


\sqrt[3]{-1331}\\=-\sqrt[3]{1331} \\=-\sqrt[3]{11*\11*11}\\=-\sqrt[3]{11^3} \\Using \ \sqrt[n]{x^n}=x \\=-11

So,
\sqrt[3]{-1331}=-11

3)
2:p :: p:8

It can be written as:


p*p=2*8\\p^2=16\\Taking \ square \ root \ on \ both \ sides\\√(p^2)=√(16)\\p=\pm 4

Evaluating
2:p :: p:8 we get
p=\pm 4

4)
x^3+y^2+z \ when \ x=3, y=-2, x=-6

Put value of x, y and z in equation and solve:


x^3+y^2+z \\=(3)^3+(-2)^2+(-6)\\=27+4-6\\=25

So,
x^3+y^2+z \ when \ x=3, y=-2, x=-6 \ we \ get \ \mathbf{25}

5)
((-6)^4*(-2)^3*(3)^3)/((-6)^6)

We know (-a)^n = (a)^n when n is even and (-a)^n = (-a)^n when n is odd


((-6)^4*(-2)^3*(3)^3)/((-6)^6)\\\\=(1296*-8* 27)/(46656)\\\\=(-279936)/(46656) \\\\=-6

So,
((-6)^4*(-2)^3*(3)^3)/((-6)^6)=-6

User Blearn
by
8.3k points

No related questions found