66.5k views
4 votes
Evaluate the following pic

Evaluate the following pic-example-1
User Roshan Jha
by
8.7k points

1 Answer

3 votes

Answer:

1)
√(1225)+√(1024)=67

2)
\sqrt[3]{-1331}=-11

3) Evaluating
2:p :: p:8 we get
p=\pm 4

4)
x^3+y^2+z \ when \ x=3, y=-2, x=-6 \ we \ get \ \mathbf{25}

5)
((-6)^4*(-2)^3*(3)^3)/((-6)^6)=-6

Explanation:

1)
√(1225)+√(1024)

Prime factors of 1225 : 5x5x7x7

Prime factors of 1024: 2x2x2x2x2x2x2x2x2x2


√(1225)+√(1024)\\=√(5*5*7*7)+√(2*2*2*2*2*2*2*2*2*2)\\=√(5^2*7^2)+√(2^2*2^2*2^2*2^2*2^2)\\=5*7+(2*2*2*2*2)\\=35+32\\=67


√(1225)+√(1024)=67

2)
\sqrt[3]{-1331}

We know that
\sqrt[n]{-x}=-\sqrt[n]{x} \ ( \ if \ n \ is \ odd)

Applying radical rule:


\sqrt[3]{-1331}\\=-\sqrt[3]{1331} \\=-\sqrt[3]{11*\11*11}\\=-\sqrt[3]{11^3} \\Using \ \sqrt[n]{x^n}=x \\=-11

So,
\sqrt[3]{-1331}=-11

3)
2:p :: p:8

It can be written as:


p*p=2*8\\p^2=16\\Taking \ square \ root \ on \ both \ sides\\√(p^2)=√(16)\\p=\pm 4

Evaluating
2:p :: p:8 we get
p=\pm 4

4)
x^3+y^2+z \ when \ x=3, y=-2, x=-6

Put value of x, y and z in equation and solve:


x^3+y^2+z \\=(3)^3+(-2)^2+(-6)\\=27+4-6\\=25

So,
x^3+y^2+z \ when \ x=3, y=-2, x=-6 \ we \ get \ \mathbf{25}

5)
((-6)^4*(-2)^3*(3)^3)/((-6)^6)

We know (-a)^n = (a)^n when n is even and (-a)^n = (-a)^n when n is odd


((-6)^4*(-2)^3*(3)^3)/((-6)^6)\\\\=(1296*-8* 27)/(46656)\\\\=(-279936)/(46656) \\\\=-6

So,
((-6)^4*(-2)^3*(3)^3)/((-6)^6)=-6

User Blearn
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories