Answer: 12.0 m/s^2
Step-by-step explanation:
Let
be the angular acceleration of the end of the rod
Taking torque about the link, we have:
![\tau = W * OM\\ or\\ \tau = mg* \left((L)/(2)\right)\sin 55^\circ ....(i)](https://img.qammunity.org/2023/formulas/physics/college/zwpiswrl2i395dk28brpvoq1gr2ncp7raa.png)
Torque is also given in terms of moment of inertia of the rod and its angular acceleration i.e.
![\tau = I_(rod)\ \alpha......(ii)](https://img.qammunity.org/2023/formulas/physics/college/phc4j0fdsvh57zbk92465w46mvo73pzs8y.png)
From equations (i) and (ii) we have:
![mg* \left((L)/(2)\right)\sin 55^\circ = \left((mL^2)/(3)\right)\alpha\ \ \ \ \ \ \ (\because I_(rod) = (mL^2)/(3)) \\ \\ \alpha = \left((3g)/(2L)\right)\sin 55^\circ\\ \\ \alpha = \left((3* 9.8)/(2* 2.4)\right)\sin 55^\circ\\ \\ \boxed{\alpha = 5.02\ rad/s^2} }](https://img.qammunity.org/2023/formulas/physics/college/12oigukarcmqwmsykhvaqccbu6zb8zai3v.png)
The acceleration of the end of the rod farthest from the link is given by:
![a = L\alpha\\ \\ a = (2.4\ m)(5.02\ rad/s^2)\\ \\ \boxed{a = 12.0\ m/s^2}](https://img.qammunity.org/2023/formulas/physics/college/itrvc7nbgyv75l0eplj5fyz4lz95oan0mx.png)