Answer:
Value of a= 6
Value of b= 7.81
Explanation:
We are given
![tan \theta=(5)/(6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mj38gifmr12417nx6hpp2mqjqcobv8iw9j.png)
and
![cos \theta=(a)/(b)](https://img.qammunity.org/2021/formulas/mathematics/high-school/szs7igskpz2xe5vjo43m8n9vklp9ryszm4.png)
We need to find values of a and b
We know that:
![tan \theta=(Perpendicular)/(Base)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8k2yohg9w3wibma70gd1p5rsg3kuf8cvw9.png)
While
![cos \theta = (Base)/(Hypotenuse)](https://img.qammunity.org/2021/formulas/mathematics/high-school/5j4xe1s8b2k3nal4efi1btxhzlq2t693mw.png)
So, a = Base and b= Hypotenuse
We know the value of base i,e
![tan \theta=(Perpendicular)/(Base)=(5)/(6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/o5yejo3d9tp8ds6v5hlio17zsyp7v8tw7c.png)
We get Base=6, Perpendicular = 5
To find Hypotenuse we can use Pythagoras theorem
![(H)^2=(P)^2+(B)^2\\H^2=(5)^2+(6)^2\\H^2=25+36\\H^2=61\\H=√(61)\\H=7.81](https://img.qammunity.org/2021/formulas/mathematics/high-school/xhvrlufcb7584kxpemz3hga1kor0rk9zm0.png)
The value of hypotenuse is 7.81
The value of Base is 6
So,
![cos \theta = (Base)/(Hypotenuse) =(a)/(b)= (6)/(7.81)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7ijisravp0ayfrwxxub6ctus4288kgloqr.png)
Value of a= 6
Value of b= 7.81