8,927 views
0 votes
0 votes
Find the resultant matrix ~


\begin{gathered} \begin{bmatrix} {5 } \\ 3 \\ 2 \\ \end{bmatrix}\end{gathered} * \begin{gathered} \begin{bmatrix} {5 } \: \: \: 3 \: \: \: 2 \\ \end{bmatrix}\end{gathered}


User Korny
by
2.6k points

2 Answers

22 votes
22 votes


\begin{gathered}\left[\begin{array}{ccc}5\\3\\2\end{array}\right] *[5 \ \ \ 3 \ \ \ 2]\end{gathered} \\ \\ \begin{gathered}\bf{\left( \begin{array}{rrr} 5 \\ 3 \\ 2 \end{array}\right) \ \ (5 \ \ 3 \ \ 2)}\end{gathered}


\begin{gathered}\bf{ \left( \begin{array}{rrr} 5*5 & 5*3 & 5*2 \\ 3*5 & 3*3 & 3*2 \\ 2*5 & 2*3 & 2*2 \end{array}\right) }\end{gathered}


\begin{gathered}\left( \begin{array}{rrr} 25 & 15 & 10 \\ 15 & 9 & 6 \\ 10 & 6 & 4 \end{array}\right)\end{gathered}

User Jonalvarezz
by
3.2k points
9 votes
9 votes


\left[\begin{array}{ccc}5\\3\\2\end{array}\right] *[5 \ \ \ 3 \ \ \ 2]

Matrix multiplications are defined if the number of columns in the first matrix is equal to the number of rows in the second matrix.


\bf{\left( \begin{array}{rrr} 5 \\ 3 \\ 2 \end{array}\right) \ \ (5 \ \ 3 \ \ 2)}

Multiply the first element of the array by the first element of the second array to get the element of the first row of the first column in the product array.


\bf{\left( \begin{array}{rrr} 5*5 & & \\ & & \\ & & \end{array}\right)}

The remaining elements of the product matrix are obtained in the same way.


\bf{ \left( \begin{array}{rrr} 5*5 & 5*3 & 5*2 \\ 3*5 & 3*3 & 3*2 \\ 2*5 & 2*3 & 2*2 \end{array}\right) }

Simplify each item by multiplying the individual terms.


\left( \begin{array}{rrr} 25 & 15 & 10 \\ 15 & 9 & 6 \\ 10 & 6 & 4 \end{array}\right)


\huge \red{\boxed{\green{\boxed{\boldsymbol{\purple{Pisces04}}}}}}

User YuC
by
2.6k points