108,579 views
44 votes
44 votes

\sf\large\green{\underbrace{\red{Question*}}}:

Solve for y

(y)/(3) > 7 - (y)/(2)


User Babul Mirdha
by
2.6k points

1 Answer

10 votes
10 votes

Answer:


y > \boxed{\cfrac{42}{5} }

Explanation:

Given inequality:


\cfrac{y}{3} > 7 - \cfrac{y}{2}

To solve for y.

Solution:

Rewrite the inequality as,


  • \displaystyle (1y)/(3) > ( - 1)/(2) y + 7

Adding 1/2y to both sides,


  • \cfrac{1}{3} y + \cfrac{ 1 }{2} y > \cfrac{ - 1}{2}y + 7 + \cfrac{1}{2} y


  • \cfrac{5}{6} y > 7

Multiplying both sides by 6/5:


  • \cfrac{6}{5} * \cfrac{5}{6} y > \cfrac{6}{5} * 7


  • y > \boxed{\cfrac{42}{5} }

Value of y is 42/5.

User Sam Johnson
by
2.9k points