173k views
4 votes
A) -0.30103 b) -1.69897 c) 9.69897 d) 0.69897​

A) -0.30103 b) -1.69897 c) 9.69897 d) 0.69897​-example-1

1 Answer

3 votes

Answer:


\log \:_(10)\left((1)/(2)\right)=-\log \:_(10)\left(2\right)=-0.30102

Thus, option A is true.

Explanation:

Given the expression


log\left((1)/(2)\right)


=\log _(10)\left(2^(-1)\right)


\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right),\:\quad \:x>0


\log _(10)\left(2^(-1)\right)=-1\cdot \log _(10)\left(2\right)

so the expression becomes


=-1\cdot \log _(10)\left(2\right)


\mathrm{Multiply:}\:1\cdot \log _(10)\left(2\right)=\log _(10)\left(2\right)


=-\log _(10)\left(2\right)

substituting the value of log 2 = 0.30103


\:=-0.30102

Thus,


\log \:_(10)\left((1)/(2)\right)=-\log \:_(10)\left(2\right)=-0.30103

Therefore, option A is true.

User Idbrii
by
5.5k points