177,229 views
33 votes
33 votes
Only a genius can solve it !!


( \cos(A) )/(1 - \sin(A) ) + ( \sin(A) )/(1 - \cos(A) ) + 1 = ( \sin(A) \cos(A) )/((1 - \sin(A)(1 - \cos(A))


Only a genius can solve it !! ( \cos(A) )/(1 - \sin(A) ) + ( \sin(A) )/(1 - \cos(A-example-1
User Nishanth Anand
by
2.7k points

1 Answer

10 votes
10 votes


\text{L.H.S}\\\\=(\cos A)/(1-\sin A) + (\sin A)/(1-\cos A) +1\\\\\\=(\cos A(1-\cos A) + \sin A(1-\sin A) + (1-\sin A)(1 - \cos A))/((1-\sin A)(1 -\cos A))\\\\\\=(\cos A - \cos^2 A + \sin A - \sin^2 A + 1 - \cos A - \sin A + \sin A \cos A)/((1 -\sin A)(1 - \cos A))\\\\\\=(-(\sin^2 A + \cos^2A) +1 + \sin A \cos A)/((1 - \sin A)(1 - \cos A))\\\\\\=(-1 + 1 + \sin A \cos A )/((1 - \sin A)((1 - \cos A))\\\\\\=(0+ \sin A \cos A)/((1 - \sin A)(1 - \cos A))\\


=(\sin A \cos A)/((1 - \sin A)(1 - \cos A))\\\\\\=\text{R.H.S}\\\\\text{Proved.}

User Qnan
by
2.8k points