170,751 views
22 votes
22 votes
What is the area of a circle with a radius of 4 cm? Use 3.14 for pi and round to the nearest hundredth. Answer value

User NickOS
by
3.1k points

2 Answers

14 votes
14 votes


\textit{area of a circle}\\\\A=\pi r^2~~\begin{cases}r=radius\\[-0.5em]\hrulefill\\r=4\end{cases}\implies A=\pi (4)^2\implies \stackrel{using~\pi =3.14}{A=50.24}

User Moiz Irshad
by
3.1k points
17 votes
17 votes

Answer:

The area of circle is 50.24 cm².

Step-by-step Step-by-step explanation:

Here's the required formula to find the area of circle :


\longrightarrow{\sf{\pmb{Area_((Circle)) = \pi{r}^(2)}}}

  • π = 3.14
  • r = radius

Substituting all the given values in the formula to find the area of circle :


\longrightarrow{\sf{Area_((Circle)) = \pi{r}^(2)}}


\longrightarrow{\sf{Area_((Circle)) = 3.14{(4)}^(2)}}


\longrightarrow{\sf{Area_((Circle)) = (314)/(100){(4 * 4)}}}


\longrightarrow{\sf{Area_((Circle)) = (314)/(100){(16)}}}


\longrightarrow{\sf{Area_((Circle)) = (314)/(100) * 16}}


\longrightarrow{\sf{Area_((Circle)) = (5024)/(100)}}


\longrightarrow{\sf{\underline{\underline{\red{Area_((Circle)) = 50.24 \: {cm}^(2)}}}}}

Hence, the area of circle is 50.24 cm².


\rule{300}{2.5}

User Carl Brubaker
by
3.2k points