Answer:
1. Triangle
2. Not a triangle
3. Triangle
4. Not a triangle
Explanation:
Required
Check for valid triangles
Given 3 sides of a triangle: A triangle is valid If the sum of any two sides is greater than the third
1. Sides: 2cm, 3cm and 4cm
To check:
2cm + 3cm > 4cm --- True
2cm + 4cm > 3cm ---- True
3cm + 4cm > 2cm ----- True
The above conditions are true, hence the input values form a triangle.
2. Sides: 2cm, 3cm and 6cm
To check:
2cm + 3cm > 6cm --- False
2cm + 6cm > 3cm ---- True
3cm + 6cm > 2cm ----- True
One of the above conditions is false. Hence, the input values do not form a triangle.
Given the angles of a triangle, their sum must be equal to 180°
3. Angles: 90°, 45° and 45°
Sum = 90° + 45° + 45°
Sum = 180°
This is a valid triangle because the sum equals 180°
4. Angles: 90°, 60° and 60°
Sum = 90° + 60° + 60°
Sum = 210°
This is not a valid triangle because the sum does not equal to 180°
The above conditions are true, hence the input values form a triangle.