Answer:
![(0.1481323,\ 0.2018677)](https://img.qammunity.org/2021/formulas/mathematics/college/gr8stoyb4vl6i4vuerv3471ny7xulsptbt.png)
Explanation:
The confidence interval for population proportion :
, where n= sample size,
= sample proportion , z*= Critical z-value.
Let p = population proportion of successes.
Given: n= 200 ,
![\hat{p}=(35)/(200)=0.175](https://img.qammunity.org/2021/formulas/mathematics/college/k6k4c74ca8rl7i6tjmb2uhsnzalrxiivxf.png)
Critical z value for 95% confidence = 1.96
The 95% confidence interval for a population proportion is:
![0.175\pm (1.96)\sqrt{((0.175)(1-0.175))/(200)}\\\\=\ 0.175\pm (1.96)√(0.000721875)\\\\= 0.175\pm (1.96)(0.0268677)\\\\=(0.175-0.0268677,0.175+0.0268677)\\\\= (0.1481323,\ 0.2018677)](https://img.qammunity.org/2021/formulas/mathematics/college/b5n7zx68n43dmbuh9yrgim6lggtmeqw1ww.png)
Required confidence interval:
![(0.1481323,\ 0.2018677)](https://img.qammunity.org/2021/formulas/mathematics/college/gr8stoyb4vl6i4vuerv3471ny7xulsptbt.png)