Answer:
No real roots.
General Formulas and Concepts:
Pre-Algebra
- Order of Operations: BPEMDAS
Algebra I
- Standard Form: ax² + bx + c = 0
- Quadratic Formula:
![x=(-b\pm√(b^2-4ac) )/(2a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/slv1i3wrs0tu4oudgu3ojp323chawqq6ca.png)
Algebra II
Explanation:
Step 1: Define
-3x² + 2x = 1
Step 2: Rewrite in Standard Form
- Subtract 1 on both sides: -3x² + 2x - 1 = 0
Step 3: Define
a = -3
b = 2
c = -1
Step 4: Find roots
- Substitute in variables:
![x=(-2\pm√(2^2-4(-3)(-1)) )/(2(-3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/kgitxrfmdv0kkc2wdp6880f0oo51ndka11.png)
- Exponents:
![x=(-2\pm√(4-4(-3)(-1)) )/(2(-3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/5gxsx63nyr1ahhjrssftqtlia80ou2wa93.png)
- Multiply:
![x=(-2\pm√(4-12) )/(-6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6cf79llqc6zozyhztk3s384620i2lpd8e9.png)
- Subtract:
![x=(-2\pm√(-8) )/(-6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tpxnpzuch4csedni62gcsf91hgwttoaz35.png)
Here we see that we cannot take the square root of a negative number. We will get no real roots and only imaginary ones.