Answer:
Please check the explanation!
Explanation:
As the discrimination expression is
![b^2-4ac](https://img.qammunity.org/2021/formulas/mathematics/high-school/py9bu5ke2vu23y3bmv6ki03lnl5vykvy45.png)
if
![b^2-4ac\:<0](https://img.qammunity.org/2021/formulas/mathematics/high-school/weh524mms29xgrf95li51kl9ah3dznwzcl.png)
then the equation has no real solution.
Given the equation
![mx^2+3x+1-m=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/oyj0t9e4nlue5hw99wt2osbt74aibubgbs.png)
by comparing the quadratic equation
![\:ax^2+bx+c=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/t7l9pr9d2jt8q0zmljyl38rgl9s9c3zbpr.png)
![mx^2+3x+1-m=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/oyj0t9e4nlue5hw99wt2osbt74aibubgbs.png)
we can observe that
![a=m](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tclho6iodbh90najy7pqh7hwfx537s5fvg.png)
![c=(1-m)](https://img.qammunity.org/2021/formulas/mathematics/high-school/319siijnpkcmee5mt86d4a2do5gqs8bnxv.png)
substituting the values in discrimination to find the values of m
so
![3^2-4m\left(1-m\right)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/i45lvto0e28ek5cwbmkr9wwqwgen2operr.png)
![9-4m+4m^2=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/cgexz6vx72jrpy99myoea3e4zbedkq0bce.png)
![4m^2-4m+9=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/aohdoz79blfsehnvhlw9vriifjw476ck9a.png)
![(-4m+4m^2)/(4)=(-9)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xh30m85qes2c94dsmqcvgr53libfpneoyj.png)
![-m+m^2=-(9)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/j3na9cwb6q23jvcm071rgyu3d9x6j931u3.png)
![\left(m-(1)/(2)\right)^2=-2](https://img.qammunity.org/2021/formulas/mathematics/high-school/x5volkiawtpbpb9tyhj0brodq9tzntzbyf.png)
as
![\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=√(a),\:-√(a)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rr73rrl5uun4akik8gnj7d1qydxl8v3y3o.png)
so solving
![m-(1)/(2)=√(-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/casyyfg3u80xls1mbclaacfzgdb3rp0xp2.png)
∵
![√(-1)=i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n68q4hjgrq4xn8nlr5b8pfjnd82ybjuwtf.png)
![m=√(2)i+(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ozu1mhryo671j4wn1sumhbw2wehy5ee0p5.png)
and also solving
![m-(1)/(2)=-√(-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jp1b4zwzv8f43gf12ys5y3p74fn0au7129.png)
![m-(1)/(2)=-√(2)i](https://img.qammunity.org/2021/formulas/mathematics/high-school/dmzmebke7cscpcubv2rog40m67tzv7bla7.png)
![m=-√(2)i+(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lmbpkyrcxh0rooxmrxpzegt9xyemo7yx5t.png)
As we know that
if
![b^2-4ac\:<0](https://img.qammunity.org/2021/formulas/mathematics/high-school/weh524mms29xgrf95li51kl9ah3dznwzcl.png)
then the equation has no real solution.
Therefore, for the values of
, for which the equation
will have no solution.