135k views
4 votes
Suppose that the terminal side of angle alphaα lies in Quadrant I and the terminal side of angle betaβ lies in Quadrant IV. If sine alpha equals five thirteenthssinα= 5 13 and cosine beta equals StartFraction 6 Over StartRoot 85 EndRoot EndFractioncosβ= 6 85​, find the exact value of cosine left parenthesis alpha plus beta right parenthesiscos(α+β).

1 Answer

3 votes

Solution :

It is given that :


$\alpha$ lies in the first quadrant.

And
$\beta$ lies in the fourth quadrant.

Since,
$\sin \alpha = (5)/(13)$ and
$\cos \beta = (6)/(√(85))$ (given)


$\sin \alpha = (5)/(13)$


$\cos \alpha = √(1-\sin^2 \alpha)$


$\cos \alpha = (12)/(13)$

Similarly
$\cos \beta = (6)/(√(85))$


$\sin \beta = √(1-\cos^2 \beta)$


$\sin \beta = \sqrt{1-(36)/(85)}$


$-(7)/(√(85))$ (IVth quadrant)

Therefore,


$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$


$=(12)/(13)* (6)/(√(85))-(5)/(13)* (-7)/(√(85))$


$= (107)/(13 √(85))$

User Jvitasek
by
5.8k points