125 = 5³, and the given expression reduces to
![\left(√(125)\right)^(\frac13)\cdot\left(\sqrt[3]{125}\right)^(\frac12)=\left(125^(\frac12)\right)^(\frac13)\cdot\left(125^(\frac13)\right)^(\frac12)=125^(\frac16)\cdot125^(\frac16)=125^(\frac13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/p8hyu4514pjbik48wedbc4nif7il0q625d.png)
so it has a value of 5.
Now:
• the first choice is equivalent, since 625 = 25², so
![\frac{\sqrt[3]{625}}{5^(\frac13)}=(25^(\frac23))/(5^(\frac13))=(5^(\frac43))/(5^(\frac13))=5](https://img.qammunity.org/2021/formulas/mathematics/high-school/wlj09977kam66f6weitpog1hdsle39jz5u.png)
• the second choice is not equivalent, since

• the third choice is also equivalent, since
![\frac{\left(\sqrt[4]{5}\right)^7}{125^(\frac14)}=(5^(\frac74))/(5^(\frac34))=5](https://img.qammunity.org/2021/formulas/mathematics/high-school/973mviu0kklox9ljjt7soapjdjw7go2nkj.png)
• the fourth choice is also equivalent, since
![\frac{5^(\frac12)\cdot25^(\frac13)}{\sqrt[6]{5}}=(5^(\frac12)\cdot5^(\frac23))/(5^(\frac16))=(5^(\frac76))/(5^(\frac16))=5](https://img.qammunity.org/2021/formulas/mathematics/high-school/vlmztw6pp80e1zbr0zyfk760nq82d0rkxm.png)