114k views
4 votes
Find an exact value.

Cos(-7pi/12)
A. Sqrt 6 + sqrt 2
B. Sqrt 6 - sqrt 2 / 4
C. Sqrt 2 - sqrt 6
Sqrt 2 - sqrt 6 / 4

1 Answer

2 votes

Answer:


\displaystyle \cos\left(-(7\,\pi)/(12)\right) = (√(2) - √(6))/(4).

Explanation:

Convert the angle
\displaystyle \left(-(7\, \pi)/(12)\right) to degrees:


\displaystyle \left(-(7\, \pi)/(12)\right) = \left(-(7\, \pi)/(12)\right) * (180^\circ)/(\pi) = -105^\circ.

Note, that
\left(-105^\circ\right) is the sum of two common angles:
\left(-45^\circ\right) and
\left(-60^\circ\right).


  • \displaystyle \cos\left(-45^\circ\right) = \cos\left(45^\circ\right) = (√(2))/(2).

  • \displaystyle \cos\left(-60^\circ\right) = \cos\left(60^\circ\right) = (1)/(2).

  • \displaystyle \sin\left(-45^\circ\right) = -\sin\left(45^\circ\right) = -(√(2))/(2).

  • \displaystyle \sin\left(-60^\circ\right) = -\sin\left(60^\circ\right) = -(√(3))/(2).

By the sum-angle identity of cosine:


\cos(A + B) = \cos(A)\cdot \cos(B) - \sin(A) \cdot \sin(B).

Apply the sum formula for cosine to find the exact value of
\cos\left(-105^\circ \right).


\begin{aligned}\cos\left(-105^\circ \right) &= \cos\left(\left(-45^\circ\right) + \left(-60^\circ\right)\right) \\ &= \cos\left(-45^\circ\right) \cdot \cos\left(-60^\circ\right)\right) - \sin\left(-45^\circ\right) \cdot \sin\left(-60^\circ\right)\right) \\ &= (√(2))/(2) * (1)/(2) - \left(-(√(2))/(2)\right)* \left(-(√(3))/(2)\right) = (√(2) - √(6))/(4)\end{aligned}.


\displaystyle \left(-(7\, \pi)/(12)\right) = \left(-(7\, \pi)/(12)\right) * (180^\circ)/(\pi) = -105^\circ. In other words,
\displaystyle \left(-(7\, \pi)/(12)\right) and
\left(-105^\circ\right) correspond to the same angle. Therefore, the cosine of
\displaystyle \left(-(7\, \pi)/(12)\right)\! would be equal to the cosine of
\left(-105^\circ\right)\!.


\displaystyle \cos\left(-(7\,\pi)/(12)\right) = \cos\left(-105^\circ\right) = (√(2) - √(6))/(4).

User Dave Challis
by
4.0k points