Answer:
Step-by-step explanation:
Finding the domain:
The domain of a function is the set of possible input values for which the function is real and defined.
Given the function
![y=-5x-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/svqw072kc9gxhasrt43qnyidu1yvr1jc27.png)
The function has no undefined points nor domain constraints. Hence, the domain is
![-\infty \:<x<\infty \:](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xo103daynldp4je7k2u2l8u94oy4n2hr26.png)
i.e.
![\mathrm{Domain\:of\:}\:-5x-1\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/high-school/x4vo3jvp5iovbnjz55hnvyqop0ca01ukde.png)
Finding the range:
The range of a function is the set of possible output values (dependent variable y values) for which a function is defined.
The range of polynomials with odd degree is all the real numbers.
Hence, the domain is
![-\infty \:<y<\infty \:](https://img.qammunity.org/2021/formulas/mathematics/high-school/dozwki4bjyym7rezgg53lcc9g5a5dpe0vk.png)
i.e.
![\mathrm{Range\:of\:}-5x-1:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/high-school/8ewmn4441be5x5njoyjup0j2hvf2w0h9bm.png)