412,152 views
11 votes
11 votes
Find the exact value of the expression.

Find the exact value of the expression.-example-1
User Beaton
by
3.1k points

2 Answers

14 votes
14 votes

Explanation:

let


a = \cos {}^( - 1) ( (5)/(6) )


b = \tan {}^( - 1) ( (1)/(2) )


\sin(a - b) = \sin(a) \cos(b) - \cos(a) \sin(b)

Substitute


\sin( \cos {}^( - 1) ( (5)/(6) ) ) \cos( \tan {}^( - 1) ( (1)/(2) ) ) - \cos( \cos {}^( - 1) ( (5)/(6) ) ) \sin( \tan {}^( - 1) ( (1)/(2) ) )


( √(11) )/(6) (2)/( √(5) ) - (5)/(6) (1)/( √(5) )


( √(11) )/(6) ( 2√(5) )/(5) - (5 √(5) )/(30)


( 2√(11) √(5) - 5 √(5) )/(30)


( √(5) (2 √(11) - 5))/(30)

User Magne Land
by
2.8k points
10 votes
10 votes


\sin(a-b)=\sin a \cos b-\cos a \sin b. If we let
a=\cos^(-1) \left((5)/(6) \right) and
b=\tan^(-1) \left((1)/(2) \right), then the given expression is equal to:


\sin \left(\cos^(-1) \left((5)/(6)} \right) \right) \cos \left(\tan^(-1) \left((1)/(2) \right) \right)-\cos\left(\cos^(-1) \left((5)/(6) \right) \right) \sin \left( \tan^(-1) \left((1)/(2) \right) \right)

Using the Pythagorean identities
\sin^(2) x+\cos^(2) x=1 and
\tan^(2) x+1=\sec^(2) x,


1) \sin^(2) \left(\cos^(-1) \left((5)/(6) \right) \right)+\cos^(2) \left(\cos^(-1) \left((5)/(6) \right) \right)=1\\\sin^(2) \left(\cos^(-1) \left((5)/(6) \right) \right)+(25)/(36)=1\\\sin^(2) \left(\cos^(-1) \left((5)/(6) \right) \right)=(11)/(36)\sin \left(\cos^(-1) \left((5)/(6) \right) \right)=(√(11))/(6)


2) \tan^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)+1=\sec^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)\\(1)/(4)+1=\sec^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)\\(5)/(4)=\sec^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)\\\sec \left(\tan^(-1) \left((1)/(2) \right) \right)=(√(5))/(2)\\\implies \cos \left(\tan^(-1) \left((1)/(2) \right) \right)=(2)/(√(5))=(2√(5))/(5)


\cos^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)+\sin^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)=1\\(4)/(5)+\sin^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)=1\\\sin^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)=(1)/(5)\\\left(\tan^(-1) \left((1)/(2) \right) \right)=(1)/(√(5))=(√(5))/(5)

This means we can write the original expression as:


\left((√(11))/(6) \right) \left((2√(5))/(5) \right)-\left((5)/(6) \right) \left((√(5))/(5) \right)\\=(2√(11)√(5))/(30)-(5√(5))/(30)\\=\boxed{(√(5)(2√(11)-5))/(30)}

Find the exact value of the expression.-example-1
User Scott Gribben
by
2.7k points