Answer :
2y=1+e−x2
Solution :
IF=e∫2xdx=ex2
∴y×ex2=∫xex2dx=12∫etdt+C, where x2=t
=12ex2+C.
∴y=12+Cex2
Putting y=1andx=0, we get C=12.
6.5m questions
8.6m answers