Given:
Height of box = (x-2)
Volume of box =
![(x^3-8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gv8otv9h03pec3tl6sbk9g796sgi28o7do.png)
To find:
The expression for the base area.
Solution:
We know that,
Volume of a box(V) = Base area(B) × Height(h)
![V=Bh](https://img.qammunity.org/2021/formulas/mathematics/middle-school/98yqxpekwq7axh35wvv4ldln98lt74fjll.png)
![(V)/(h)=B](https://img.qammunity.org/2021/formulas/mathematics/high-school/mlaylfsb8t8km41cgim7z5w260osi0mlgr.png)
On substituting the given values, we get
![B=(x^3-8)/(x-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g63iker7q104dmsua8ir7f0z03lulvhh8o.png)
![B=(x^3-2^3)/(x-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4t70mmwcsbby476yjv85826mb8chemz9yu.png)
![[\because a^3-b^3=(a-b)(a^2+ab+b^2)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/42ppvii6ssdvpd5j3onja5p0xmvlvpe0yp.png)
![B=x^2+2x+4](https://img.qammunity.org/2021/formulas/mathematics/high-school/kralygg1zy5xjhy49gynw931gca5xahvlr.png)
So, the base area is
.
Therefore, the correct option is B.