173,235 views
40 votes
40 votes
Reflections

1) reflection across y=x
2) rotation 90degree counterclockwise
3) translation

Reflections 1) reflection across y=x 2) rotation 90degree counterclockwise 3) translation-example-1
User Eugene Smoliy
by
3.1k points

1 Answer

12 votes
12 votes

1) Reflecting over y=x means
(x, y) \longrightarrow (y,x). So, the coordinates of the image are:


V(-3, 0) \longrightarrow V'(0,-3)\\\\W(-1,0) \longrightarrow W'(0, -1)\\\\U(-2,-5) \longrightarrow U'(-5,-2)\\\\X(3,-3) \longrightarrow X'(-3, 3)


2) Rotating 90 degrees counterclockwise about the origin means
(x,y) \longrightarrow (-y,x), so the vertices of the image are:


W(0,-1) \longrightarrow W'(1,0)\\\\X(3,-1) \longrightarrow X'(1, 3)\\\\V(0,-3) \longrightarrow V'(3,0)\\\\Y(1, -5) \longrightarrow Y'(5, 1)

3) The vertices of the image are:


C(2,0) \longrightarrow C'(-2, -2)\\\\D(2, 5) \longrightarrow D'(-2, 3)\\\\E(5,4) \longrightarrow E'(1, 2)

User Josef Joe Samanek
by
3.3k points