Answer:
C. y = 20
Explanation:
Given system of equations:
![\begin{cases}3y = 18x + 6\\y = 2x + 14\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gyteodu2nyelcugz983r0g73tqj5g99xvq.png)
Multiply the second equation by 3:
![\implies (3)y=(3)2x+(3)14](https://img.qammunity.org/2023/formulas/mathematics/high-school/lto6harc1at7ga6owfiums3aobo1kigto4.png)
![\implies 3y=6x+42](https://img.qammunity.org/2023/formulas/mathematics/high-school/22htc2bf160fl8ix67d16q99apxct3326a.png)
Subtract this from the first equation to eliminate 3y:
![\begin{array}{r l}3y & = 18x+6\\-\quad3y&=6x+42\\\cline{1-2}0&=12x-36\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lluznth037p0mjvnskqe3yzirs42kwiicv.png)
Solve the resulting equation for x:
![\implies 12x-36=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/pct0ix514usylsxkimeg7iqxys1bxou2e8.png)
![\implies 12x=36](https://img.qammunity.org/2023/formulas/mathematics/high-school/zh8dy2ykfdigh98vvq3klgiz1hh3srcur8.png)
![\implies x=3](https://img.qammunity.org/2023/formulas/mathematics/high-school/mzf4ih6guqait6h2fqn9pc6o8r041andur.png)
Substitute the found value of x into the original second equation and solve for y:
![\implies y=2(3)+14](https://img.qammunity.org/2023/formulas/mathematics/high-school/du7wj12horckj7miuey8ruo8c93s8k9wkh.png)
![\implies y=6+14](https://img.qammunity.org/2023/formulas/mathematics/high-school/emcvd8v50cy3jcgsqealt5n9vyydg6rytq.png)
![\implies y=20](https://img.qammunity.org/2023/formulas/mathematics/high-school/oljpdiozuq0gm22818l0cyhi3kcorx0y0n.png)