224k views
5 votes
Let f(x)= x^2-4x-c. Find a nonzero value of c such that f(c)=c.​

User Jan Kuiken
by
5.5k points

1 Answer

1 vote

Answer:

The nonzero value of c will be:


  • c = 6

Explanation:

Given the function


f\left(x\right)=\:x^2-4x-c


f\left(c\right)=\:c^2-4c-c

as


f(c) = c

so


c=\:c^2-4c-c

switching the sides


c^2-4c-c=c

subtract c from both sides


c^2-4c-c-c=c-c


c^2-6c=0


c\left(c-6\right)=0

Using the zero factor principle


\:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)


c=0\quad \mathrm{or}\quad \:c-6=0

so, the solutions to the quadratic equations are:


c=0,\:c=6

Therefore, a nonzero value of c will be:


  • c = 6
User Rian Mostert
by
4.5k points