Answer:
![[f(x)]^2-g(x) = 5x^2-13x-8](https://img.qammunity.org/2021/formulas/mathematics/college/4jp591u7wnrxm25wxtbdfjnjuaa8ye7ulg.png)
Explanation:
Given

To find:
![[f(x)]^2-g(x)](https://img.qammunity.org/2021/formulas/mathematics/college/c95q019acfv1w2kn8f86rhg1z9fizlyh23.png)
First of all the square of first function f(x) will be found and then second function g(x) will be subtracted from the square of first function
Squaring the first function
![[f(x)]^2 = (2x-2)^2\\Using\ (a-b)^2 = a^2-2ab+b^2\\\[f(x)]^2 = (2x)^2-2(2x)(2)+(2)^2\\= 4x^2-8x+4](https://img.qammunity.org/2021/formulas/mathematics/college/dsopdm5k7igbgc15cxkup4otn2qdki5ae8.png)
Now subtracting g(x) from [f(x)]^2
![[f(x)]^2-g(x) = (4x^2-8x+4)-(-x^2+5x+12)\\\[f(x)]^2-g(x) = 4x^2-8x+4+x^2-5x-12](https://img.qammunity.org/2021/formulas/mathematics/college/c6x8pbgqeriyw9h6ubb0wa0ilb01kn225g.png)
Combining alike terms
![[f(x)]^2-g(x) = 4x^2+x^2-5x-8x+4-12\\\[f(x)]^2-g(x) = 5x^2-13x-8](https://img.qammunity.org/2021/formulas/mathematics/college/pqz0tbh2a1nkyg3gi463ptq9o4fim1o4pa.png)
Hence,
Subtracting g(x) from the square of f(x) gives us:
![[f(x)]^2-g(x) = 5x^2-13x-8](https://img.qammunity.org/2021/formulas/mathematics/college/4jp591u7wnrxm25wxtbdfjnjuaa8ye7ulg.png)