Answer:
A.) 0.0426
B) 0.073121
C.) 0.96958
D.) 1.2 seconds
E.) 1.689 < x < 6.785
Explanation:
Given a normal distribution :
Mean download time (m) = 4.237 seconds
Standard deviation (s) = 1.3 seconds
A.) Probability that download time is less than 2 seconds :
P(x < 2)
Obtain standardized score (Z) :
Z = (x - m) / s
Z = (2 - 4.237) / 1.3
Z = −1.720769
P(Z < - 1.7208) = 0.0426 (Z probability calculator)
B.) Between 1.5 and 2.5 seconds :
1.5 < z < 2.5
((x - m) / s) < z <((x - m) / s)
((1.5 - 4.237) / 1.3) < z < ((2.5 - 4.237) / 1.3)
−2.105384 < z < −1.336153
P(Z < - 2.10538) = 0.017629
P(Z −1.336153) = 0.09075
0.09075 - 0.017629 = 0.073121
C.) Above 1.8 seconds
P(x > 1.8)
Obtain standardized score (Z) :
Z = (x - m) / s
Z = (1.8 - 4.237) / 1.3
Z = −1.874615
P(Z > −1.874615) = 0.96958 (Z probability calculator)
D.) 99% of the download times are slower (higher) than how many seconds?
P(Z > x) = 99% = 0.99
Z value corresponds to -2.326
Z = (x - m) / s
-2.326 = (x - 4.237) / 1.3
-2.326 * 1.3 = x - 4.237
−3.0238 = x - 4.237
−3.0238 + 4.237 = x
x = 1.2132
x = 1.2 seconds
E. 95% of the download times are between what two values, symmetrically distributed around the mean?
For symmetric distribution around the mean ;
P(-Z<x<Z) = 0.95
Corresponds to a z value of 1.96
-1.96 * 1.3 = x - 4.237
-2.548 = x - 4.237
x = - 2.548 + 4.237
x = 1.689
1.96 * 1.3 = x - 4.237
2.548 = x - 4.237
x = 2.548 + 4.237
x = 6.785
1.689 < x < 6.785