Answer:
The volume of the solid is 243
![√(2) \ \pi](https://img.qammunity.org/2021/formulas/mathematics/college/txz0meioe3hfqjbh4vi4rf0m4b8ltzsoef.png)
Explanation:
From the information given:
BY applying sphere coordinates:
0 ≤ x² + y² + z² ≤ 81
0 ≤ ρ² ≤ 81
0 ≤ ρ ≤ 9
The intersection that takes place in the sphere and the cone is:
![x^2 +y^2 ( √(x^2 +y^2 ))^2 = 81](https://img.qammunity.org/2021/formulas/mathematics/college/96wn9xsl24d3zt0nknqyf2sd5hrp459lvd.png)
![2(x^2 + y^2) =81](https://img.qammunity.org/2021/formulas/mathematics/college/xj2vsw9z88osjsyoy0srgl6ciuwsro3eo5.png)
![x^2 +y^2 = (81)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/2g0hopt9oyk15q3q3v1pxm4quxdbzcwm48.png)
Thus; the region bounded is: 0 ≤ θ ≤ 2π
This implies that:
![z = √(x^2+y^2)](https://img.qammunity.org/2021/formulas/mathematics/college/mug141fy4dg5guotueh1tdpxnlq88ap6v0.png)
ρcosФ = ρsinФ
tanФ = 1
Ф = π/4
Similarly; in the X-Y plane;
z = 0
ρcosФ = 0
cosФ = 0
Ф = π/2
So here;
![(\pi)/(4) \leq \phi \le (\pi)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/31b6jbxfaxe0qn26dgbcg48wdoyo4tk1mz.png)
Thus, volume:
![V = \iiint_E \ d V = \int \limits^(\pi/2)_(\pi/4) \int \limits ^(2\pi)_(0) \int \limits^9_0 \rho ^2 \ sin \phi \ d\rho \ d \theta \ d \phi](https://img.qammunity.org/2021/formulas/mathematics/college/ztvo11xyzr4y7fj7lxbtq5x9gc90u6fl3u.png)
![V = \int \limits^(\pi/2)_(\pi/4) \ sin \phi \ d \phi \int \limits ^(2\pi)_(0) d \theta \int \limits^9_0 \rho ^2 d\rho](https://img.qammunity.org/2021/formulas/mathematics/college/inaflv3bbqgieox2ohyfe4r4p3gqgpqpnv.png)
![V = \bigg [-cos \phi \bigg]^(\pi/2)_(\pi/4) \bigg [\theta \bigg]^(2 \pi)_(0) \bigg [(\rho^3)/(3) \bigg ]^(9)_(0)](https://img.qammunity.org/2021/formulas/mathematics/college/ubhzgzklnlupy95grgoasrxapn3fjjsztr.png)
![V = [ -0+ (1)/(√(2))][2 \pi -0] [(9^3)/(3)- 0 ]](https://img.qammunity.org/2021/formulas/mathematics/college/rhpzvn3s89nni638ol9fvkgn26d3knd8l9.png)
V = 243
![√(2) \ \pi](https://img.qammunity.org/2021/formulas/mathematics/college/txz0meioe3hfqjbh4vi4rf0m4b8ltzsoef.png)