Answer:
P(300 < p^ < 340) = 0.9876 or 98.76%
Explanation:
We are given;
Population proportion; p = 80% = 0.8
Sample proportion; p1^ = 300/400 = 0.75 and p2^ = 340/400 = 0.85
Sample size: n = 400
z-score formula for sample proportion is;
z = (p^ - p)/(√(p(1 - p)/n)
Thus;
z1 = (0.75 - 0.8)/(√(0.8(1 - 0.8)/400)
z1 = -0.05/0.02
z1 = -2.5
z2 = (0.85 - 0.8)/(√(0.8(1 - 0.8)/400)
z2 = 0.05/0.02
z2 = 2.5
From online calculator of probability between 2 z-scores, we have;
P(-2.5 < z > 2.5) ≈ 0.9876