166,888 views
19 votes
19 votes
Find the tension in the ropes shown in the figure if the supported object weighs 600N.

Find the tension in the ropes shown in the figure if the supported object weighs 600N-example-1
User Nmott
by
3.3k points

1 Answer

14 votes
14 votes

By Newton's second and third laws, we have the following net forces at

  • point A:


\sum F_x = -T_1 \cos(60^\circ) + T_2 \cos(60^\circ) = 0


\sum F_y = T_1 \sin(60^\circ) + T_2 \sin(60^\circ) - 600 \,\mathrm N = 0

Together, these equations tell us
\boxed{T_1=T_2\approx 346 \,\mathrm N}.

  • point B:


\sum F_x = T_3 \cos(20^\circ) - T_2 \cos(60^\circ) - T_5 = 0


\sum F_y = T_3 \sin(20^\circ) - T_2 \sin(60^\circ) = 0

  • point C:


\sum F_x = -T_4 \cos(20^\circ) + T_1 \cos(60^\circ) + T_5 = 0


\sum F_y = T_4 \cos(20^\circ) - T_1 \sin(60^\circ) = 0

Combining the horizontal force equations for points B and C and using the fact that
T_1=T_2 gives


(T_3 \cos(20^\circ) - T_2 \cos(60^\circ) - T_5) + (-T_4  \cos(20^\circ) + T_1 \cos(60^\circ) + T_5) = 0 + 0


\implies (T_3 - T_4) \cos(20^\circ) = 0 \implies T_3=T_4

Then combining the vertical force equations for B and C, we find


(T_3 \sin(20^\circ) - T_2 \sin(60^\circ)) + (T_4 \sin(20^\circ) - T_1 \sin(60^\circ)) = 0 + 0


\implies 2 T_3 \sin(20^\circ) - 2 T_1 \sin(60^\circ) \implies T_3 = (\sin(60^\circ))/(\sin(20^\circ)) T_1

so that
\boxed{T_3 = T_4 \approx 877 \,\mathrm N}

Lastly solve for
T_5 using either horizontal force equation for B or C.


-T_4 \cos(20^\circ) + T_1 \cos(60^\circ) + T_5 = 0


\implies T_5 = \left((\sin(60^\circ))/(\sin(20^\circ)) - \cos(60^\circ)\right) T_1 \implies \boxed{T_5 \approx 651\,\mathrm N}

User Jimmy Lu
by
2.5k points