129k views
1 vote
If


f(x) = √(x) + 12
and

g(x) = 2 √(x)
what is the value of

(f - g)(144)
?​

User Glautrou
by
4.9k points

2 Answers

3 votes

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️


(f - g)(x) = √(x) + 12 - 2 √(x) \\


(f - g)(x) = - √(x) + 12


(f - g)(144) = - √(144) + 12


(f - g)(144) = - \sqrt{ {12}^(2) } + 12


(f - g)(144) = - (12) + 12


(f - g)(144) = - 12 + 12


(f - g)(144) = 0

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

User Grug
by
5.8k points
4 votes

Answer:

0

Explanation:

We have the two functions:


f(x)=√(x)+12\text{ and } g(x)=2√(x)

And we want to find (f-g)(144).

This is the same thing to f(144)-g(144).

So, let’s determine the value of f(144) and g(144) first:


\begin{aligned} f(144)&=√(144)+12 \\ &=12+12 \\ &=24\end{aligned}

And:


\begin{aligned} g(144)&=2√(144) \\ &=2(12) \\ &=24 \end{aligned}

Hence:


\begin{aligned} (f-g)(144) &= f(144)-g(144) \\ &=24-24 \\ &=0 \end{aligned}

Our final answer is 0.

User Owen Allen
by
5.6k points