200k views
2 votes
What mass in grams of MgSO4 is required to make 59.3 mL of 2.68 M
solution?

User Mtraceur
by
7.3k points

1 Answer

6 votes

Answer:

Approximately
19.1\; \rm g.

Step-by-step explanation:

Number of moles of formula units of magnesium sulfate required to make the solution

The unit of concentration in this question is "
\rm M". That's equivalent to "
\rm mol \cdot L^(-1)" (moles per liter.) In other words:


c(\mathrm{MgSO_4}) = 2.68\; \rm M = 2.68\; \rm mol \cdot L^(-1).

However, the unit of the volume of this solution is in milliliters. Convert that unit to liters:


\displaystyle V = 59.3\; \rm mL = 59.3 \; \rm mL * (1\; \rm L)/(1000\; \rm mL) = 0.0593\; \rm L.

Calculate the number of moles of
\rm MgSO_4 formula units required to make this solution:


\begin{aligned}n(\rm MgSO_4) &= c \cdot V \\ &= 2.68 \; \rm mol \cdot L^(-1) * 0.0593\; \rm L \approx 0.159\; \rm mol \end{aligned}.

Mass of magnesium sulfate in the solution

Look up the relative atomic mass data of
\rm Mg,
\rm S, and
\rm O on a modern periodic table:


  • \rm Mg:
    24.305.

  • \rm S:
    \rm 32.06.

  • \rm O:
    15.999.

Calculate the formula mass of
\rm MgSO_4 using these values:


M(\mathrm{MgSO_4}) = 24.305 + 32.06 + 4 * 15.999 \approx 120.361\; \rm g \cdot mol^(-1).

Using this formula mass, calculate the mass of that (approximately)
0.159\; \rm mol of
\rm MgSO_4 formula units:


\begin{aligned}m(\mathrm{MgSO_4}) &= n \cdot M \\&\approx 0.159 \; \rm mol * 120.361 \; \rm g \cdot mol^(-1) \approx 19.1\; \rm g\end{aligned}.

Therefore, the mass of
\rm MgSO_4 required to make this solution would be approximately
19.1\; \rm g.

User Dan Martin
by
7.2k points