145k views
8 votes
5 less than a number b is 16

User Taji
by
3.8k points

1 Answer

5 votes

Given :-


\begin{gathered}\\ \large\dashrightarrow\mathsf { \: \: 5 < b = 6 \: \: \: or \: \: \: b - 5 = 6 } \\ \end{gathered}

Solution :-


\begin{gathered}\\ \large\dashrightarrow\mathsf { \: \: b - 5 = 6 } \\ \end{gathered}


\begin{gathered}\\ \large\dashrightarrow\mathsf { \: \: b = 6 + 5 } \\ \end{gathered}


\begin{gathered}\\ \large\dashrightarrow \: \: \underline{ \boxed{\mathbf \red{ \: \: b = 11 \: \: }}} \\ \end{gathered}

Hence,

  • b is equal to 11 .

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional information


\begin{gathered}\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \small \color{blue}{ \underline{\boxed{ \begin{array}{cc} \small \underline{\underline{\bf{ \color{red}{{ \orange \bigstar \: MᴏʀE \: IᴅᴇɴᴛɪᴛɪᴇS \: \orange \bigstar}}}}} \\ \\ \: \frak{ {(x + y)}^(2) = {x}^(2) + 2xy + {y}^(2) }\:\\ \\ \: \frak{ {(x - y)}^(2) = {x}^(2) - 2xy + {y}^(2) }\:\\ \\ \: \frak{ {x}^(2) - {y}^(2) = (x + y)(x - y)}\:\\ \\ \: \frak{ {(x + y)}^(2) - {(x - y)}^(2) = 4xy}\:\\ \\ \: \frak{ {(x + y)}^(2) + {(x - y)}^(2) = 2( {x}^(2) + {y}^(2))}\:\\ \\ \: \frak{ {(x + y)}^(3) = {x}^(3) + {y}^(3) + 3xy(x + y)}\:\\ \\ \: \frak{ {(x - y)}^(3) = {x}^(3) - {y}^(3) - 3xy(x - y) }\:\\ \\ \: \frak{ {x}^(3) + {y}^(3) = (x + y)( {x}^(2) - xy + {y}^(2) )}\: \\ \: \end{array} }}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \: \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

^^

User Nikolay Mamaev
by
4.1k points