336,225 views
12 votes
12 votes
Help me , it is 50 point ​

Help me , it is 50 point ​-example-1
User Kjpires
by
3.0k points

2 Answers

19 votes
19 votes

Answer:

(a) 52.0 cm

(b) 62.8 cm

(c) 115 cm

Explanation:

Part (a)


\textsf{Chord length}=2r \sin \left((\theta)/(2)\right)

where:

  • r = radius

  • \theta = central angle (measured in degrees)

Given:

  • r = 30 cm

  • \theta = 120°
  • chord = PR

Substitute the given values into the formula:


\begin{aligned}\implies PR & =2(30)\sin \left((120^(\circ))/(2)\right)\\\\& = 30√(3)\\\\ & = 52.0\:\sf cm\:(3\:sf)\end{aligned}

Part (b)


\textsf{Arc length}=2 \pi r\left((\theta)/(360^(\circ))\right) \quad

where:

  • r = radius

  • \theta = central angle (measured in degrees)

Given:

  • r = 30 cm

  • \theta = 120°
  • arc = PQR

  • \pi = 3.142

Substitute the given values into the formula:


\begin{aligned}\implies PQR & =2 (3.142)(30)\left((120^(\circ))/(360^(\circ))\right) \quad\\\\ & = (1571)/(25)\\\\ & = 62.8 \sf \:\:cm \:(3 \:sf)\end{aligned}

Part (c)


\begin{aligned}\textsf{Perimeter of shaded portion} & = \textsf{chord length} + \textsf{arc length}\\\\ & = 30√(3)+(1571)/(25)\\\\ & = 114.80152...\\\\ & = 115\:\: \sf cm\:(3\:sf)\end{aligned}

User Dmitrii Cooler
by
3.0k points
28 votes
28 votes

Answer:

a) 52.0 cm

b) 62.8 cm

c) 114.8 cm

Conversion:

120° = 2π/3 radians

(a) Find Length of chord PR;

⇒ 2(radius)sin(θ/2)

⇒ 2(30)sin((2π/3)/2)

⇒ 2(30)sin((2(3.142)/3)/2)

⇒ 30√3

52.0 cm

(b) Find Length of arc PQR;

⇒ radius(θ)

⇒ 30(2π/3)

⇒ 30(2(3.142)/3)

62.8 cm

(c) The perimeter of shaded region;

⇒ Length of chord + Length of arc

⇒ 62.84 + 51.965

114.8 cm

User Eidy
by
2.5k points