75.9k views
5 votes
A stationary gas-turbine power plant operates on a simple ideal Brayton cycle with air as the working fluid. The air enters the compressor at 95 kPa and 290 K and the turbine at 760 kPa and 1100 K. Heat is transferred to air at a rate of 35,000 kJ/s. Determine the power delivered by this plant (a) assuming constant specific heats at room temperature and (b) accounting for the variation of specific heats with temperature.

User Miral
by
5.3k points

1 Answer

3 votes

Answer:

A) W' = 15680 KW

B) W' = 17113.87 KW

Step-by-step explanation:

We are given;

Temperature at state 1; T1 = 290 K

Temperature at state 3; T3 = 1100 K

Rate of heat transfer; Q_in = 35000 kJ/s = 35000 Kw

Pressure of air into compressor; P_c = 95 kPa

Pressure of air into turbine; P_t = 760 kPa

A) The power assuming constant specific heats at room temperature is gotten from;

W' = [1 - ((T4 - T1)/(T3 - T2))] × Q_in

Now, we don't have T4 and T2 but they can be gotten from;

T4 = [T3 × (r_p)^((1 - k)/k)]

T2 = [T1 × (r_p)^((k - 1)/k)]

r_p = P_t/P_c

r_p = 760/95

r_p = 8

Also,k which is specific heat capacity of air has a constant value of 1.4

Thus;

Plugging in the relevant values, we have;

T4 = [(1100 × (8^((1 - 1.4)/1.4)]

T4 = 607.25 K

T2 = [290 × (8^((1.4 - 1)/1.4)]

T2 = 525.32 K

Thus;

W' = [1 - ((607.25 - 290)/(1100 - 525.32))] × 35000

W' = 0.448 × 35000

W' = 15680 KW

B) The power accounting for the variation of specific heats with temperature is given by;

W' = [1 - ((h4 - h1)/(h3 - h2))] × Q_in

From the table attached, we have the following;

At temperature of 607.25 K and by interpolation; h4 = 614.64 KJ/K

At T3 = 1100 K, h3 = 1161.07 KJ/K

At T1 = 290 K, h1 = 290.16 KJ/K

At T2 = 525.32 K, and by interpolation, h2 = 526.12 KJ/K

Thus;

W' = [1 - ((614.64 - 290.16)/(1161.07 - 526.12))] × 35000

W' = 17113.87 KW

A stationary gas-turbine power plant operates on a simple ideal Brayton cycle with-example-1
User FloatingKiwi
by
5.6k points