219k views
3 votes
If
\sf x^((x^4)) = 4, then find the value of
\sf x^((x^2)) + x^((x^8)).

1 Answer

3 votes

By inspection, we can see that x = ±√2, since (±√2)⁴ = 2² = 4.

In particular, if
x^n=n, which means
x=n^(\frac1n), then
x^(x^n)=x^n=n.

Let x = √2. Then


x^(x^2)+x^(x^8)=(\sqrt2)^((\sqrt2)^2)+(\sqrt2)^((\sqrt2)^8)


x^(x^2)+x^(x^8)=(\sqrt2)^2+(\sqrt2)^(16)


x^(x^2)+x^(x^8)=2+256


x^(x^2)+x^(x^8)=\boxed{258}

User ShadowMitia
by
7.7k points