Answer:
![\displaystyle y'' = \frac{√(x) + √(y)}{2x^\big{(3)/(2)}}](https://img.qammunity.org/2021/formulas/mathematics/college/2v5y58s9kcp7huqgmoet3v8ul8fo2etdra.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]:
![\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))](https://img.qammunity.org/2021/formulas/mathematics/college/526v84fft3iovys57h8fyaznapbe78t2md.png)
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/ljowxevzhh8dk8mfdheam579ywk5jvteyi.png)
Implicit Differentiation
Explanation:
*Note:
Allow a to be defined as an arbitrary constant.
Step 1: Define
![\displaystyle x^\big{(1)/(2)} + y^\big{(1)/(2)} = a^\big{(1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/h6bsmh73i4qvqbvat9g7aaxukuc4uhvi81.png)
Step 2: Differentiate
- Basic Power Rule [Addition/Subtraction, Chain Rule]:
![\displaystyle (1)/(2√(x)) + (y')/(2√(y)) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/u8ieaoii3z332jmzhlanvr60bafby79ads.png)
- Isolate y' term:
![\displaystyle (y')/(2√(y)) = -(1)/(2√(x))](https://img.qammunity.org/2021/formulas/mathematics/college/egm8v5e7m3u67c850oa9otyb2cvhpnm6u6.png)
- Isolate y':
![\displaystyle y' = -(√(y))/(√(x))](https://img.qammunity.org/2021/formulas/mathematics/college/wexib2k1siwbsmsi9pi92npk68svqv5t4s.png)
- Derivative Rule [Quotient Rule]:
![\displaystyle y'' = -((√(y))'(√(x)) - √(y)(√(x))')/((√(x))^2)](https://img.qammunity.org/2021/formulas/mathematics/college/jw9jcs108xuvc6x9jq5brd2cps0i0j9k54.png)
- Basic Power Rule [Derivative Rule - Chain Rule]:
![\displaystyle y'' = -((y'√(x))/(2√(y)) - (√(y))/(2√(x)))/((√(x))^2)](https://img.qammunity.org/2021/formulas/mathematics/college/f6mpa8kado3etm65rrrheznb6j4cimjg6s.png)
- Simplify:
![\displaystyle y'' = -((y'√(x))/(2√(y)) - (√(y))/(2√(x)))/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bd4cflopxuef0uduivpkuenf9zbl8xhtor.png)
- Rewrite:
![\displaystyle y'' = \frac{-(y'x - y)}{2x^\big{(3)/(2)}√(y)}](https://img.qammunity.org/2021/formulas/mathematics/college/gw06loozcs0u8x5x4ni6iiy35s31e2645b.png)
- Substitute in y':
![\displaystyle y'' = \frac{-(-(√(y))/(√(x))x - y)}{2x^\big{(3)/(2)}√(y)}](https://img.qammunity.org/2021/formulas/mathematics/college/la87q4go5qhtycdyxos8g4k7kutsjye8yf.png)
- Simplify:
![\displaystyle y'' = \frac{√(x) + √(y)}{2x^\big{(3)/(2)}}](https://img.qammunity.org/2021/formulas/mathematics/college/2v5y58s9kcp7huqgmoet3v8ul8fo2etdra.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation