Answer:
Below in bold.
Explanation:
a = 16, b = 19 and c = 14.
By the Cosine Rule:
cos A = (a^2 - b^2 - c^2) / -2bc, so:
cos A = ( 16^2 - 19^2 - 14^2) / (-2*19*14)
= -301 / - 532
= 0.565789
m < A = 55.54 degrees.
Now Using the Sine Rule:
a / sin A = b / sin B
16 / sin 55.54 = 19/sin B
sin B = 19 * sin 55.54 / 16
= 15.666 / 16
= 0.979125
m < B = 78.27 degrees.
Finally
m < C = 180 - 55.54 - 78.27 = 46.19 degrees.