Answer:
The equation is;
y = 200•0.8^x
where y is the number of bears remaining and x is the year number in particular
Explanation:
Let us have the rate of decrease as r and we set up an exponential equation
y = I• ( 1 - r)^x
where r is the percentage decrease, I is the initial population = 200 and x is the number of years
For the population after 1 year, we have;
160 = 200( 1 -r)^x
divide both sides by 200
0.8 = (1-r)^1
0.8 = 1 - r
r = 1 - 0.8
r = 0.2
So the equation will be;
y = 200( 1 - 0.2)^x
y = 200•0.8^x