Answer:
(5 q^2 - r^2 s) (25 q^4 + 5 q^2 r^2 s + r^4 s^2)
Explanation:
Factor the following:
125 q^6 - r^6 s^3
Hint: | Express 125 q^6 - r^6 s^3 as a difference of cubes.
125 q^6 - r^6 s^3 = (5 q^2)^3 - (r^2 s)^3:
(5 q^2)^3 - (r^2 s)^3
Hint: | Factor the difference of two cubes.
Factor the difference of two cubes. (5 q^2)^3 - (r^2 s)^3 = (5 q^2 - r^2 s) ((5 q^2)^2 + 5 q^2 r^2 s + (r^2 s)^2):
(5 q^2 - r^2 s) ((5 q^2)^2 + 5 q^2 r^2 s + (r^2 s)^2)
Hint: | Distribute exponents over products in (5 q^2)^2.
Multiply each exponent in 5 q^2 by 2:
(5 q^2 - r^2 s) (5^2 q^(2×2) + 5 q^2 r^2 s + (r^2 s)^2)
Hint: | Multiply 2 and 2 together.
2×2 = 4:
(5 q^2 - r^2 s) (5^2 q^4 + 5 q^2 r^2 s + (r^2 s)^2)
Hint: | Evaluate 5^2.
5^2 = 25:
(5 q^2 - r^2 s) (25 q^4 + 5 q^2 r^2 s + (r^2 s)^2)
Hint: | Distribute exponents over products in (r^2 s)^2.
Multiply each exponent in r^2 s by 2:
(5 q^2 - r^2 s) (25 q^4 + 5 q^2 r^2 s + r^(2×2) s^2)
Hint: | Multiply 2 and 2 together.
2×2 = 4:
Answer: (5 q^2 - r^2 s) (25 q^4 + 5 q^2 r^2 s + r^4 s^2)