10.4k views
0 votes
Factor 125q^6 − r^6s^3.

User Mat Sz
by
3.9k points

1 Answer

6 votes

Answer:

(5 q^2 - r^2 s) (25 q^4 + 5 q^2 r^2 s + r^4 s^2)

Explanation:

Factor the following:

125 q^6 - r^6 s^3

Hint: | Express 125 q^6 - r^6 s^3 as a difference of cubes.

125 q^6 - r^6 s^3 = (5 q^2)^3 - (r^2 s)^3:

(5 q^2)^3 - (r^2 s)^3

Hint: | Factor the difference of two cubes.

Factor the difference of two cubes. (5 q^2)^3 - (r^2 s)^3 = (5 q^2 - r^2 s) ((5 q^2)^2 + 5 q^2 r^2 s + (r^2 s)^2):

(5 q^2 - r^2 s) ((5 q^2)^2 + 5 q^2 r^2 s + (r^2 s)^2)

Hint: | Distribute exponents over products in (5 q^2)^2.

Multiply each exponent in 5 q^2 by 2:

(5 q^2 - r^2 s) (5^2 q^(2×2) + 5 q^2 r^2 s + (r^2 s)^2)

Hint: | Multiply 2 and 2 together.

2×2 = 4:

(5 q^2 - r^2 s) (5^2 q^4 + 5 q^2 r^2 s + (r^2 s)^2)

Hint: | Evaluate 5^2.

5^2 = 25:

(5 q^2 - r^2 s) (25 q^4 + 5 q^2 r^2 s + (r^2 s)^2)

Hint: | Distribute exponents over products in (r^2 s)^2.

Multiply each exponent in r^2 s by 2:

(5 q^2 - r^2 s) (25 q^4 + 5 q^2 r^2 s + r^(2×2) s^2)

Hint: | Multiply 2 and 2 together.

2×2 = 4:

Answer: (5 q^2 - r^2 s) (25 q^4 + 5 q^2 r^2 s + r^4 s^2)

User Emyl
by
4.4k points