151k views
5 votes
Solve the system, by elimination please show all the steps!

-2x+2y+3z=0
-2x-y+z=-3
2x+3y+3z=5

User Vezult
by
4.1k points

2 Answers

2 votes

Answer:

x = 1 , y = 1 , z = 0

Explanation:

Solve the following system:

{-2 x + 2 y + 3 z = 0 | (equation 1)

-2 x - y + z = -3 | (equation 2)

2 x + 3 y + 3 z = 5 | (equation 3)

Subtract equation 1 from equation 2:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x - 3 y - 2 z = -3 | (equation 2)

2 x + 3 y + 3 z = 5 | (equation 3)

Multiply equation 2 by -1:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+3 y + 2 z = 3 | (equation 2)

2 x + 3 y + 3 z = 5 | (equation 3)

Add equation 1 to equation 3:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+3 y + 2 z = 3 | (equation 2)

0 x+5 y + 6 z = 5 | (equation 3)

Swap equation 2 with equation 3:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+5 y + 6 z = 5 | (equation 2)

0 x+3 y + 2 z = 3 | (equation 3)

Subtract 3/5 × (equation 2) from equation 3:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+5 y + 6 z = 5 | (equation 2)

0 x+0 y - (8 z)/5 = 0 | (equation 3)

Multiply equation 3 by 5/8:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+5 y + 6 z = 5 | (equation 2)

0 x+0 y - z = 0 | (equation 3)

Multiply equation 3 by -1:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+5 y + 6 z = 5 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Subtract 6 × (equation 3) from equation 2:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+5 y+0 z = 5 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Divide equation 2 by 5:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+y+0 z = 1 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Subtract 2 × (equation 2) from equation 1:

{-(2 x) + 0 y+3 z = -2 | (equation 1)

0 x+y+0 z = 1 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Subtract 3 × (equation 3) from equation 1:

{-(2 x)+0 y+0 z = -2 | (equation 1)

0 x+y+0 z = 1 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Divide equation 1 by -2:

{x+0 y+0 z = 1 | (equation 1)

0 x+y+0 z = 1 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Collect results:

Answer: {x = 1 , y = 1 , z = 0

User Vaseem Ahmed Khan
by
4.8k points
2 votes

Answer:

x= 1, y = 1, z= 0

Step-by-step explanation

-2x + 2y + 3z = 0

2x + 3y + 3z = 5

-2x - y + z = -3

2x + 3y + 3z = 5

(solving systems)

5y + 6z = 5

2y + 4z = 2

(rewriting)

z = 0

y = 1

-2x + 2 x 1 + 3 x 0

x=1

User Hemesh Singh
by
4.9k points