Answer:
Proof below
Explanation:
Trigonometric Identities
Before we prove the given identity, we need to recall:
![(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc](https://img.qammunity.org/2021/formulas/mathematics/college/4jpvhg6k5r2cae5wdatsbi3nqu3dhlcdp7.png)
We have to prove that:
![(1+\sin\theta+\cos\theta)^2=2(1+\sin\theta)(1+\cos\theta)](https://img.qammunity.org/2021/formulas/mathematics/college/wm7zexawp1ewf7a51lowlc7xy7krlbhkjp.png)
Let's expand the square on the left side as indicated in the formula above:
![(1+\sin\theta+\cos\theta)^2=1^2+\sin^2\theta+\cos^2\theta+2\sin\theta+2\cos\theta+2\sin\theta\cos\theta](https://img.qammunity.org/2021/formulas/mathematics/college/gm9o1luycl3k6okkq03a8cdbe3a13hivml.png)
Recall the fundamental trigonometric identity:
![\sin^2\theta+\cos^2\theta=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wswvyf4x1cyxscra2nghklv3w9rpimbtab.png)
Substituting and operating:
![(1+\sin\theta+\cos\theta)^2=2+2\sin\theta+2\cos\theta+2\sin\theta\cos\theta](https://img.qammunity.org/2021/formulas/mathematics/college/tbs0wazcsjre2f3b78x08xay3pjyfu6zpu.png)
Factoring by 2:
![(1+\sin\theta+\cos\theta)^2=2(1+\sin\theta+\cos\theta+\sin\theta\cos\theta)](https://img.qammunity.org/2021/formulas/mathematics/college/ybqc9gskwnwwl4idhvtfbrugmuk946m1f3.png)
Factoring cos θ in the last two terms:
![(1+\sin\theta+\cos\theta)^2=2[1+\sin\theta+\cos\theta(1+\sin\theta)]](https://img.qammunity.org/2021/formulas/mathematics/college/ynr25vhtkn3m9ccdh5bb3n6oi6dsac5bwv.png)
Factoring
![1+\sin\theta](https://img.qammunity.org/2021/formulas/mathematics/college/90za0sucebwq25a4crjz7ogizzm2lft6nm.png)
![(1+\sin\theta+\cos\theta)^2=2(1+\sin\theta)(1+\cos\theta)](https://img.qammunity.org/2021/formulas/mathematics/college/wm7zexawp1ewf7a51lowlc7xy7krlbhkjp.png)
Proven