4.4k views
4 votes
If A= arcsin(-4/5) in Quadrant IV and B=arctan(5/12) in Quadrant III, what is the values of tan(arcsin(-4/5)+arctan(5/12))? ASAP please...

If A= arcsin(-4/5) in Quadrant IV and B=arctan(5/12) in Quadrant III, what is the-example-1
User Elexhobby
by
4.4k points

2 Answers

3 votes

Answer:

pie/6

Explaniation:

just took the test on k12

User Donald Byrd
by
4.4k points
2 votes

Answer:

-33/56

Explanation:

suppose: A,B are the 2 angles of a triangle

we have: A = arcsin
(-4)/(5)

B = arctan
(5)/(12)

=> sin A =
(-4)/(5) => cos A =
\sqrt{1-((-4)^(2) )/(5^(2) ) } =(3)/(5) (because A is in quadrant IV)

tan B =
(5)/(12)

have:


1+ cot^(2)B=(1)/(sin^(2)B ) => 1+(1)/(tan^(2) B)=(1)/(sin^(2)B ) \\=> 1+(1)/((5^(2) )/(12^(2) ) ) =(1)/(sin^(2)B )\\ => sin^(2)B=(25)/(169)

because B is in quadrant III =>
sin B=-\sqrt{(25)/(169) }=(-5)/(13)=>cosB=-\sqrt{1-(5^(2) )/(13^(2) ) }=(-12)/(13)

tan(arcsin(-4/5)+arctan(5/12)) = tan( A + B)

but A,B are the 2 angles of a triangle => tan(A + B) =
(sin(A+B))/(cos(A+B))

have: sin(A+B) = sinA.cosB + cosA.sinB =
(-4)/(5).(-12)/(13) +(3)/(5).(-5)/(13)=(33)/(65)

cos(A + B) = cosA.cosB - sinA.sinB =
(3)/(5).(-12)/(13)-(-4)/(5).(-5)/(13)=(-56)/(65)

=> tan(A + B) =
(33)/(65):(-56)/(65)=(-33)/(56)

User Origaminal
by
4.6k points