468,813 views
0 votes
0 votes
Someone please help

Someone please help-example-1
User Patrik Stas
by
2.8k points

1 Answer

20 votes
20 votes

Answer:

Part (a)

Given:


\displaystyle \int\limits_(1)^(3) x^2 \:dx

Trapezium Rule


\displaystyle \int\limits_(a)^(b) y \:dx \approx (1)/(2)h\left[(y_0+y_n)+2(y_1+y_2+...+y_(n-1))\right] \quad \textsf{where }h=(b-a)/(n)

Calculate the width of each strip (h).

Given:

  • a = 1
  • b = 3
  • n = 5


\implies h=(3-1)/(5)=0.4

Create a table with the x and y values:


\large\begin{array} c \cline{1-7} x & 1 & 1.4 & 1.8 & 2.2 & 2.6 & 3\\\cline{1-7} y & 1 & 1.96 & 3.24 & 4.84 & 6.76 & 9\\\cline{1-7}\end{array}

Put all the values into the formula:


\begin{aligned}\displaystyle \int\limits_(1)^(3) x^2 \:dx & \approx (1)/(2)(0.4)\left[(1+9)+2(1.96+3.24+4.84+6.76)\right]\\& = 0.2\left[10+2(16.8)\right]\\\\& = 0.2\left[10+33.6\right]\\\\& = 0.2\left[43.6\right]\\\\& = 8.72 \end{aligned}

Part (b)


\begin{aligned}\displaystyle \int\limits_(1)^(3) x^2 \:dx &=\left[(1)/(3)x^3\right]^3_1\\& = (1)/(3)(3)^3-(1)/(3)(1)^3\\& = 9-(1)/(3)\\& = (26)/(3)\end{aligned}

The exact area as a decimal is
\sf 8.\dot{6}. Therefore, the estimated answer of 8.72 is an overestimate.

Part (c)

Answer to (a) = 8.72

To find the maximum possible error:

  • Identify the last non-zero digit to the right of the decimal point → 2
  • The precision of the number is the place value: 0.01
  • Divide the precision by 2

Therefore, the maximum possible error for 8.72 is 0.005.

Part (d)

Trapezoid Error formula


|E| \leq ((b-a)^3)/(12n^2)\left[\textsf{max}|f''(x)|\right],\quad a \leq x \leq b

Calculate the second derivative:


f(x)=x^2


f'(x)=2x


f''(x)=2

Input the values into the formula:


\implies |E| \leq ((3-1)^3)/(12n^2)(2) < 0.001


\implies 16 \leq 0.012n^2


\implies 36.5148...\leq n


\implies 37\leq n

User Knut Arne Vedaa
by
2.8k points