190k views
1 vote
Assume that the population proportion is 0.46. Compute the standard error of the proportion, σp, for sample sizes of 500,000; 1,000,000; 5,000,000; 10,000,000; and 100,000,000. (Round your answers to five decimal places.)

User Rswolff
by
4.6k points

1 Answer

4 votes

Answer with explanation:

Given: The population proportion: p = 0.46

Standard error =
\sigma_p=\sqrt{(p(1-p))/(n)} , where n= sample size.

a) n= 500,000


\sigma_p=\sqrt{(0.46(1-0.46))/(500000)}


=\sqrt{(0.46* 0.54)/(500000)}=√(0.0000004968)\approx0.00070

b) n= 1,000,000


\sigma_p=\sqrt{(0.46(1-0.46))/(1000000)}


=\sqrt{(0.46* 0.54)/(1000000)}=√(0.0000002484)\approx0.00050

c) n= 5,000,000


\sigma_p=\sqrt{(0.46(1-0.46))/(5000000)}


=\sqrt{(0.46* 0.54)/(5000000)}=√(0.00000004968)\approx0.00022

d) n= 10,000,000


\sigma_p=\sqrt{(0.46(1-0.46))/(10000000)}


=\sqrt{(0.46* 0.54)/(10000000)}=√(0.00000002484)\approx0.00016

e) n= 100,000,000


\sigma_p=\sqrt{(0.46(1-0.46))/(100000000)}=√(0.000000002484)\approx0.00004


=\sqrt{(0.46* 0.54)/(500000)}=√(0.0000004968)\approx0.00070

User Rtorres
by
4.0k points