Given that :-
Prove that :-
- Tan (a-B) = [ sin 2B/(5 – cos 2B)]
Taking RHS :-
= sin 2B/(5 – cos 2B)] = [(2 tan B)/(1 + tan2B)]/ [5 – {(1 – tan2B)/(1 + tan2B)}]
= (2 tan B)/ [5(1 + tan2B) – 1 + tan2B]
= (2 tan B)/[5 + 5 tan2B – 1 + tan2B)
= (2 tan B)/(4 + 6 tan2B)
= (2 tan B)/[2(2 + 3 tan2B)]
= tan B/(2 + 3 tan B tan B)
Dividing the numerator and denominator by 2,
= [(1/2) tan B]/ [1 + (3/2) tan B tan B]
= [(3/2) tan B – tan B]/[1 + tan A tan B] {from (i)}
= (tan A – tan B)/(1 + tan A tan B)
= tan(A – B) = LHS