Answer:
slope = 2
Explanation:
Slope-intercept form of a linear equation:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
(where m is the slope and b is the y-intercept)
Given equation:
![3x + 6y = -54](https://img.qammunity.org/2023/formulas/mathematics/college/21tsmnldifk930y8tr8jojnafcnk44pwmp.png)
Rearrange the given equation to make y the subject:
![\implies 6y=-3x=-54](https://img.qammunity.org/2023/formulas/mathematics/college/ibnti4vfpnutid83gv650msk45q66cbt9e.png)
![\implies y=-(1)/(2)x-9](https://img.qammunity.org/2023/formulas/mathematics/college/axo8mphmtda1gaxfp2pt3h2sk3yf2v2cgg.png)
Therefore, the slope of the given equation is
.
If two lines are perpendicular to each other, the product of their slopes will be -1.
Therefore, the slope (m) of the line perpendicular to the given equation is:
![\implies -(1)/(2) \cdot m=-1](https://img.qammunity.org/2023/formulas/mathematics/college/dneox8wp9x7c50f0d7iuvyc4jg7vvundnk.png)
![\implies m=-1 / -(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/g3g74b896ldca1paciiigw9goutsj4x01p.png)
![\implies m=-1 \cdot-2](https://img.qammunity.org/2023/formulas/mathematics/college/ym7gw0uyi04olpauo1wuucigmcs8oqqvdm.png)
![\implies m=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/x6z943rkb89gjf57mxvze0ohmvf02sqzao.png)