50.5k views
5 votes
Use Lagrange multipliers to find the absolute maximum value and absolute minimum value of f(x, y) = 2x 2 + 2y subject to x 2 + 2y + y 2 = 15.

User Stricq
by
3.9k points

1 Answer

4 votes

Answer:

Maximum absolute value of f=61/2 at (
3/2√(7),-1/2) and (
-3/2√(7),-1/2)

Minimum absolute value of f=-10 at (0,-5)

Explanation:

We are given that


f(x,y)=2x^2+2y

Let


g(x,y)=x^2+2y+y^2-15=0


\\abla f(x,y)=<4x,2>


\\abla g(x,y)=<2x,2+2y>

Using Lagrange multipliers


f_x(x,y)=\lambda g_x(x,y)


4x=2x\lambda


4x-2x\lambda=2x(2-\lambda)=0

x=0 or


\lambda=2

If x=0

Then,


y^2+2y-15=0


y^2+5y-3y-15=0


y(y+5)-3(y+5)=0


(y+5)(y-3)=0


y=-5,3


2=(2+2y)\lambda

If
\lambda=2


2=2(2+2y)


2/2=2+2y


1=2+2y


2y=1-2=-1


y=-(1)/(2)

If y=-1/2

Then,


x^2-1+1/4=15


x^2+((-4+1)/(4))=15


x^2-(3)/(4)=15


x^2=15+3/4=(60+3)/(4)=(63)/(4)


x=\pm(3√(7))/(2)

Therefore, possible extreme points are

(0,-5),(0,3),(
3/2√(7),-1/2) and (
-3/2√(7),-1/2)


f(0,-5)=2(0)+2(-5)=-10


f(0,3)=2(3)=6


f(3/2√(7),-1/2)=(63)/(2)-1=(61)/(2)


f(-3/2√(7),-1/2)=(63)/(2)-1=(61)/(2)

Therefore, maximum absolute value of f=61/2 at (
3/2√(7),-1/2) and (
-3/2√(7),-1/2)

Minimum absolute value of f=-10 at (0,-5)

User Dper
by
4.1k points