The answer depends on what you know about the sequence
...
If
is geometric, then
![a_n=ra_(n-1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xhic0fmmcjej0qfef8mk9lp5gp7flrz2mm.png)
for some fixed number r. Using this recursive rule, we get
![a_(n-1)=ra_(n-2)\implies a_n=r^2a_(n-2)](https://img.qammunity.org/2021/formulas/mathematics/college/k2ar01ek27qkg9ogyfkhu868x69k1goz1p.png)
![a_(n-2)=ra_(n-3)\implies a_n=r^3a_(n-3)](https://img.qammunity.org/2021/formulas/mathematics/college/v5kf303oj9rz0o82r391zfcrs4wm1nu1f3.png)
and so on, down to the 1st term in the sequence:
![a_n=r^(n-1)a_1](https://img.qammunity.org/2021/formulas/mathematics/college/od3j28fpn2485l0gqnclqcsr4lryzj6d1h.png)
This means
![a_3=81=r^2a_1](https://img.qammunity.org/2021/formulas/mathematics/college/579tgd9vr359zx3njck0r6uiugvd4c7sr6.png)
![a_6=648=r^5a_1](https://img.qammunity.org/2021/formulas/mathematics/college/vt6ifq2y8mn90zlie3or70bhia8n1mxmbh.png)
so that
![(648)/(81)=(r^5a_1)/(r^2a_1)\implies 8=r^3\implies r=2](https://img.qammunity.org/2021/formulas/mathematics/college/ddvruat2yhlw44sbs3uoh3dkdgqnd1t7d6.png)
Now solve for
:
![81=2^2a_1\implies a_1=\boxed{\frac{81}4}](https://img.qammunity.org/2021/formulas/mathematics/college/cj5tk133apdzzk7ncja0phql630lq7j8kt.png)
If instead
is arithmetic, then
![a_n=a_(n-1)+d](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ad5nca4qx7wfqi4s91m1omrfze0aizrujb.png)
for some fixed number d. Similarly, we can get the n-th number in the sequence in terms of the 1st one:
![a_(n-1)=a_(n-2)+d\implies a_n=a_(n-2)+2d](https://img.qammunity.org/2021/formulas/mathematics/college/erqxrphyb0vb3677gz09tyv85d83g1a47r.png)
![a_(n-2)=a_(n-3)+d\implies a_n=a_(n-3)+3d](https://img.qammunity.org/2021/formulas/mathematics/college/88mil2b3n3a6hnkj1iv73cnzxfiacef0ju.png)
and so on, down to
![a_n=a_1+(n-1)d](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z3x908ob45q3vvx5ngmqfg3i3kob6ay7ud.png)
Then
![a_3=81=a_1+2d](https://img.qammunity.org/2021/formulas/mathematics/college/kmyq4eizz8b2py9amp594agx2haod2kho0.png)
![a_6=648=a_1+5d](https://img.qammunity.org/2021/formulas/mathematics/college/69nz982bsxzce07jxt1z4sy9hbail1qvmm.png)
Solve for d :
![(a_1+5d)-(a_1+2d)=648-81\implies 3d=567\implies d=189](https://img.qammunity.org/2021/formulas/mathematics/college/v1ejpfbprmibntmer7knjvdxx86lbdjsk9.png)
Now solve for
:
![81=a_1+2\cdot189\implies a_1=\boxed{-297}](https://img.qammunity.org/2021/formulas/mathematics/college/9l4clpeu3crg754r3oc08buakqc45tio7b.png)